
 International Journal of Innovative Research in Engineering & Management(IJIREM)
 ISSN: 2350-0557, Volume-1, Issue-3, November-2014

5

Study and Analysis of ELF Vulnerabilities in Linux
Biswajit Sarma

Assistant professor, Department of
Computer Science and Engineering,

Jorhat Engineering College,

Srishti Dasgupta
Final year student, Department of computer

Science and Engineering,
Jorhat Engineering College

ABSTRACT
Internally the Linux kernel uses a binary format loader
layer to implement the low level format dependent functionality
of the execve() system call to replace current process by a new
one or to execute a new process. The common execve() code
contains just few helper functions used to load the new binary
and leaves the format specific work to a specialized binary format
loader. One of the Linux format loaders is the ELF
(Executable and Linkable Format) loader. There are three
header areas in an ELF files: the main ELF header, the program
headers, and then the section headers. The program code lies
between the program headers and the section headers. This paper
will take a look at the Linux ELF file format and examine
possibilities of file virus infectors.

Keywords
 Linux, Execve, Loader, Virus.

1. INTRODUCTION
In computing, the Executable and Linkable Format (ELF,
formerly called Extensible Linking Format) is a common standard
file format for executables, object code, shared libraries, and core
dumps. An executable file using the ELF file format consists of an
ELF header, followed by a program header table or a section
header table, or both. The ELF header is always at offset zero of
the file. The offset of the program header table and the section
header table in the file are defined in the ELF header.

2. THE ELF HEADER
2.1 The Main ELF File header
We start with the file header analysis. The following structures are
available in elf.h.The fields of interest to us are e_entry,
e_phoff,e_shoff, and the sizes given. e_entry specifies the location
of _start, e_phoff shows us where the array of program headers
lies in relation to the start of the executable, and e_shoff shows us
the same for the section headers. Here is the structure of ELF file
header.

typedef struct
{
unsigned char e_ident[EI_NIDENT];/* Magic number and other
info */
 Elf32_Half e_type; /* Object file type */

 Elf32_Half e_machine; /* Architecture */

 Elf32_Word e_version; /* Object file version */

 Elf32_Addr e_entry; /* Entry point virtual address */

 Elf32_Off e_phoff; /* Program header table file offset
*/

 Elf32_Off e_shoff; /* Section header table file offset */

 Elf32_Word e_flags; /* Processor-specific flags */

 Elf32_Half e_ehsize; /* ELF header size in bytes */

 Elf32_Half e_phentsize; /* Program header table entry size */

 Elf32_Half e_phnum; /* Program header table entry count */

 Elf32_Half e_shentsize; /* Section header table entry size */

 Elf32_Half e_shnum; /* Section header table entry count */

 Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

Study and Analysis of ELF Vulnerabilities in Linux

6

2.2 The Program Header
The next portion of the program are the ELF program headers.
These describe the sections of the program that contain executable
program code to get mapped into the program address space as it
loads.

typedef struct

{

 Elf32_Word p_type; /* Segment type */

 Elf32_Off p_offset; /* Segment file offset */

 Elf32_Addr p_vaddr; /* Segment virtual address */

 Elf32_Addr p_paddr; /* Segment physical address */

 Elf32_Word p_filesz; /* Segment size in file */

 Elf32_Word p_memsz; /* Segment size in memory */

Elf32_Word p_flags; /* Segment flags */

Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

2.3 The ELF Body
The body of the ELF file excluding the header portion comes
next. The actual locations and sizes of portions of the body are
described by the program headers above, and these contain the
executable instructions from our assembly file, as well as string
constants and global variable declarations.

2.4 ELF Section Headers
The ELF section headers describe various sections of different
names in an executable file. Each section has an entry in the
section headers array, which is found at the bottom of the
executable file and has the following format.

typedef struct
{

 Elf32_Word sh_name; /* Section name (string tbl index) */

 Elf32_Word sh_type; /* Section type */

 Elf32_Word sh_flags; /* Section flags */

 Elf32_Addr sh_addr; /* Section virtual addr at execution */

 Elf32_Off sh_offset; /* Section file offset */

 Elf32_Word sh_size; /* Section size in bytes */

 Elf32_Word sh_link; /* Link to another section */

 Elf32_Word sh_info; /* Additional section information */

 Elf32_Word sh_addralign; /* Section alignment */

 Elf32_Word sh_entsize; /* Entry size if section holds table */

} Elf32_Shdr;

The section headers are entirely optional. ELF is extremely
flexible. Many of these sections can be shrunk, expanded,
removed, etc. In fact, it is not outside the realm of possibility that
some programs may deliberately make abnormal modifications.
One can run .text section(only) of one ELf binary in another ELF
binary. This is because how the linux (ELF) virus is written.
Generally when we compile a c program one ELF binary is
created and it has all the elements that create a process image in
the memory and start executing. But the question is how the
process is loaded in the memory. If we allocate some memory and
place the binary ELF in that memory it is not going to be executed
though it has all components of an ELF binary. Because the loader
loads the ELF binary file in memory in a meaningful way so that
the processor starts execution.

3. AN EXAMPLE
We have a C program tell.c

#include<stdio.h>
int main()
{
 printf("\n hello");
 return 0;
}

compile the program using the gcc compiler $gcc -o tell tell.
Using program readelf we can read this our ELF binary .(i.e tell)

ELF Header:
 Magic: 7f 45 4c 46 01 01 01 03 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - Linux
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Intel 80386
 Version: 0x1
 Entry point address: 0x8048310
 Start of program headers: 52 (bytes into file)
 Start of section headers: 2148 (bytes into file)
 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)

 International Journal of Innovative Research in Engineering & Management(IJIREM)
 ISSN: 2350-0557, Volume-1, Issue-3, November-2014

7

 Number of program headers: 8
 Size of section headers: 40 (bytes)
 Number of section headers: 30
 Section header string table index: 27

All the header information are available. While loading ,the loader
will read the first 4 bytes of the binary file and will confirm that
this is an ELF binary file. Here Elf file type is EXEC (Executable
file) and Entry point is 0x8048310.There are 8 program headers,
starting at offset 52. Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100
R E 0x4
INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013
R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0x00530 0x00530
R E 0x1000
LOAD 0x000530 0x08049530 0x08049530 0x000fc 0x00104
RW 0x1000
DYNAMIC 0x000544 0x08049544 0x08049544 0x000c8
0x000c8 RW 0x4
NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044 R
0x4
GNU_EH_FRAME 0x0004ac 0x080484ac 0x080484ac 0x0001c
0x0001c R 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000
0x00000 RW 0x4

Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym
.dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text
.fini .rodata .eh_frame_hdr .eh_frame
 03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
 04 .dynamic
 05 .note.ABI-tag .note.gnu.build-id
 06 .eh_frame_hdr
 07

One of the important thing is Page size of the running machine.
Our Machine page size is 4kb (0x1000=hex equivalent of 4096).
We start with details of the program header.
Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100
R E 0x4

The program header itself taking 256 bytes(8x32=256),starting at
offset 0x34 in the file and file size is 256bytes.(0x00100=hex
equivalent of 256).The flage is Read and Execute.

Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flg Align
INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013
R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.2]

The program is that which should be used to 'execute' the binary.
Here, it reads as '/lib/ld-linux.so.2', which means some dynamic
library linking will be required before we run the program. The
flag is READ only.

Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flg Align
LOAD 0x000000 0x08048000 0x08048000 0x00530 0x00530 R
E 0x1000

This line requests to read 0x530 bytes, starting at file's start and
being 0x530 bytes large (that's virtually the whole file!), which
will be read-only but executable. The file will appear to start at
virtual address 0x08048000 for the program to work properly and
we want the whole page in memory.

Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flg Align
LOAD 0x000530 0x08049530 0x08049530 0x000fc 0x00104
RW 0x1000

 With more bits to load, (likely to be .data section because the flag

is WR) it is noticeable that the 'filesize' and 'memsize' differ,

which means the .bss section will actually be allocated through
this statement, but left as zeroes while 'real' data only occupy first
0xfc bytes starting at virtual address 0x8049530. Now we
calculate the memory size 104. If we add the size of .ctors to .bss
we will find 0x104. This information is stored in one page.

Type Offset VirtAddr PhysAddr FileSiz
MemSiz Flg Align
DYNAMIC 0x000544 0x08049544 0x08049544 0x000c8
0x000c8 RW 0x4

The dynamic sections are used to store information used in the
dynamic linking process, such as required libraries and relocation
entries.

Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flg Align

Study and Analysis of ELF Vulnerabilities in Linux

8

NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044
R 0x4

NOTE sections contain information left by either the
programmer(comment lines) or the linker, for most programs
linked using the GNU `ld` linker it just says 'GNU'.

Type Offset VirtAddr PhysAddr FileSiz
MemSiz Flg Align
GNU_EH_FRAME 0x0004ac 0x080484ac 0x080484ac 0x0001c
0x0001c R 0x4

that's for Execption Handler information, in case we should link
against some C++ binaries at execution (afaik).

Type Offset VirtAddr PhysAddr FileSiz
MemSiz Flg Align
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000
0x00000 RW 0x4

The stack information of the process. The most important thing at
this level is the entry point. In one place we find that

Type Offset VirtAddr PhysAddr FileSiz
MemSiz Flg Align
LOAD 0x000000 0x08048000 0x08048000 0x00530
0x00530 R E 0x1000

But the entry point is 0x8048310 . From above we know that the
starting address is 0x8048000 . So, from where does this 0x310
come from? If we look at the section of the ELF header we see
that the .text section address is 0x8048310. So the execution starts
at the address 0x8048310 section [13]. There are 30 section
headers, starting at offset 0x864:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg
Lk Inf Al
 [0] NULL 00000000 000000 000000 00
0 0 0
[1] .interp PROGBITS 08048134 000134 000013 00 A
0 0 1
[2] .note.ABI-tag NOTE 08048148 000148 000020 00 A
0 0 4
[3] .note.gnu.build-i NOTE 08048168 000168 000024 00 A
0 0 4
 [4] .gnu.hash GNU_HASH 0804818c 00018c 000020 04 A
5 0 4
 [5] .dynsym DYNSYM 080481ac 0001ac 000050 10 A
6 1 4
 [6] .dynstr STRTAB 080481fc 0001fc 00004c 00
A 0 0 1
 [7] .gnu.version VERSYM 08048248 000248 00000a 02
A 5 0 2

 [8] .gnu.version_r VERNEED 08048254 000254 000020 00 A
6 1 4
 [9] .rel.dyn REL 08048274 000274 000008 08
A 5 0 4
 [10] .rel.plt REL 0804827c 00027c 000018 08 A
5 12 4
 [11] .init PROGBITS 08048294 000294 000030 00 AX
0 0 4
 [12] .plt PROGBITS 080482c4 0002c4 000040 04 AX
0 0 4
 [13] .text PROGBITS 08048310 000310 00016c 00 AX
0 0 16
 [14] .fini PROGBITS 0804847c 00047c 00001c 00 AX
0 0 4
 [15] .rodata PROGBITS 08048498 000498 000013 00 A
0 0 4

[16] .eh_frame_hdr PROGBITS 080484ac 0004ac 00001c 00 A
0 0 4
 [17] .eh_frame PROGBITS 080484c8 0004c8 000068 00 A
0 0 4
 [18] .ctors PROGBITS 08049530 000530 000008 00
WA 0 0 4
 [19] .dtors PROGBITS 08049538 000538 000008 00 WA
0 0 4
 [20] .jcr PROGBITS 08049540 000540 000004 00 WA
0 0 4
 [21] .dynamic DYNAMIC 08049544 000544 0000c8 08 WA
6 0 4
 [22] .got PROGBITS 0804960c 00060c 000004 04 WA
0 0 4
 [23] .got.plt PROGBITS 08049610 000610 000018 04
WA 0 0 4
 [24] .data PROGBITS 08049628 000628 000004 00
WA 0 0 4
 [25] .bss NOBITS 0804962c 00062c 000008 00 WA
0 0 4
 [26] .comment PROGBITS 00000000 00062c 00013b 00
0 0 1
 [27] .shstrtab STRTAB 00000000 000767 0000fc 00
0 0 1
 [28] .symtab SYMTAB 00000000 000d14 000410 10
29 45 4
 [29] .strtab STRTAB 00000000 001124 0001fc 00
0 0 1

Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor
specific)

 International Journal of Innovative Research in Engineering & Management(IJIREM)
 ISSN: 2350-0557, Volume-1, Issue-3, November-2014

9

This is the section header information from that ELF binary. So
the file start it section from 0x8048000 and load the file. If we
calculate the size from starting to the section .eh_frames we get
0x530, which is in one page.

4. Finding the vulnerabilities in the ELF
We have a little information about the ELF file and now we can
think of a plane where we can run the .text section of one program
to another ELF.
Plane one: At first we thought of adding a .text section at EOF of
one working ELF and then of running this. The output is not the
same as that of the natural execution done earlier . This is because
that .text section is not part of the process , so the entry point is at
proper place and it executes normally.
Plane two: Then we noticed the hole in virtual memory between
the code segment and the data one. But we were not able to use it.
Overwriting on section is not used as it is not safe.
Plane three:Finally we decided to look around the segments, not
the section. Adding a new segment is possible but when we tried
to relocate the program header we encountered a few hurdles. So
we decided to enlarge one segment. As we wanted to code a non-
destructive virus, we chose to append to the file, not to overwrite a
part of it. The only way then is to enlarge a segment. As we
appended to the file, the only enlargeable segment was the data
one. The new virtual entry point is easy to calculate from the
virtual address of the data segment. We were able to run code
before the host.
 Plane four:The data segment size is not the same in memory and
in the file. It now contains the rest of the file in memory, with our
viral code appended. we thought the segmentation faults came
from that. And we were right. The .bss section problem came up.
Normally, this section's flag is SHT_NOBITS. This section should
not contain bytes from the programs. But we now understand why
the data segment stops just before the text section,i.e, .txtsegment
in the file; the program bytes are copied in memory up to our
code. And the .bss section has to be filled of zero. So we decided
to overwrite the .bss section with zeros at run time before
returning to the host. We encountered segmentation fault once
again.
Plane five: An alternative is to add the .text section at the end of
working ELF and then try to change the ELF program header so
that the new .text section is a part of the process and it gets
executed. But we try the above plane and fail because of the
memory allotment. We are not able to allot memory properly to
that section. Suddenly we find that the NOTE section in the ELF
program header is doing nothing. Since this >text section is a
LOAD section and it is like the same as the first LOAD in the
ELF so, we copy that LOAD to NOTE. Thus, we have now three
LOAD sections.

[root@localhost 1]# readelf -l lsn

Elf file type is EXEC (Executable file) Entry point 0x08048310
There are 8 program headers, starting at offset 52
Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz
MemSiz Flg Align
 PHDR 0x000034 0x08048034 0x08048034 0x00100
0x00100 R E 0x4
 INTERP 0x000134 0x08048134 0x08048134 0x00013
0x00013 R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.2]
 LOAD 0x000000 0x08048000 0x08048000 0x00530
0x00530 R E 0x1000
 LOAD 0x000530 0x08049530 0x08049530 0x000fc
0x00104 RW 0x1000
 DYNAMIC 0x000544 0x08049544 0x08049544 0x000c8
0x000c8 RW 0x4
 LOAD 0x000000 0x08048000 0x08048000 0x00530
0x00530 R E 0x1000 [*]
 GNU_EH_FRAME 0x0004ac 0x080484ac 0x080484ac
0x0001c 0x0001c R 0x4
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000
0x00000 RW 0x4
[*] shows that we are able to replace the NOTE program header
with a new LOAD program header. If one looks at this program
header carefully the flags are R and E ,i.e., read and execute. So
modification is possible in ELF program header. But if we have a
look at the entry point of the program ,it is still 0x08048310 and if
we run the program , it will execute normally. We even are not
sure what that 3rd LOAD does. So we have to modify the 3rd
LOAD so that the process has the 3rdLOAD able section. We now
try to modify the 3rd LOAD section . We know its offset already.
So, we have to LOAD the 3rd loadable section but since we are
new to this field of research , we will load the whole file now.
At the end we try to modify the entry point according to the newly
LOAD section(by adding the extra bytes so it skips to appropriate
place) . So the program starts with execution of the new LOAD
section.

5. CONCLUSION
We have studied the internal details of the ELF file format. The
main intention in this paper is to discuss how the process is
created in the system from the ELF file and also we have tried to
find a vulnerable point in the ELF file format. These information
can be used for further research work in different fields related to
ELF file format.

 REFERENCES

[1] Ryan O’Neill “Extending the ELF Core Format for Forensics
Snapshots” in Leviathan Research November 2014

[2] Ian Lance Taylor “A New ELF Linker” in iant@google.com
[3] Marius Van Oers “LINUX VIRUSES – ELF FILE

FORMAT” in VIRUS BULLETIN CONFERENCE,
SEPTEMBER 2000

[4] wikipedia.org

